#222. 【基础】经典递归问题——汉诺塔

【基础】经典递归问题——汉诺塔

说明

汉诺塔(又称河内塔)问题是印度的一个古老的传说。开天辟地的神勃拉玛在一个庙里留下了三根金刚石的棒,第一根上面套着64个圆的金片,最大的一个在底下,其余一个比一个小,依次叠上去,庙里的众僧不倦地把它们一个个地从这根棒搬到另一根棒上,规定可利用中间的一根棒作为帮助,但每次只能搬一个,而且大的不能放在小的上面。面对庞大的数字(移动圆片的次数)18446744073709551615,看来,众僧们耗尽毕生精力也不可能完成金片的移动。

后来,这个传说就演变为汉诺塔游戏:

1、有三根杆子A,B,CA,B,CAA杆上有若干碟子

2、每次移动一块碟子,小的只能叠在大的上面

3、把所有碟子从AA杆全部移到CC杆上

经过研究发现,汉诺塔的破解很简单,就是按照移动规则向一个方向移动金片:

如3阶汉诺塔的移动:AC,AB,CB,AC,BA,BC,ACA→C,A→B,C→B,A→C,B→A,B→C,A→C

此外,汉诺塔问题也是程序设计中的经典递归问题。

算法思路:

1、如果只有一个金片,则把该金片从源移动到目标棒,结束。

2、如果有NN个金片,则把前N1N-1个金片移动到辅助的棒,然后把自己移动到目标棒,最后再把前N1N-1个移动到目标棒.

输入格式

一个整数NN,表示AA柱上有NN个碟子。

输出格式

若干行,即移动的最少步骤

样例

3
A To C
A To B
C To B
A To C
B To A
B To C
A To C

数据范围

0<N190< N\leqslant 19