#3402. [GESP202312七级] 纸牌游戏

[GESP202312七级] 纸牌游戏

题目描述

你和小杨在玩一个纸牌游戏。你和小杨各有 33 张牌,分别是 0120、1、2

你们要进行 NN 轮游戏,每轮游戏双方都要出一张牌,并按 11 战胜 0022 战胜 1100 战胜 22 的规则决出胜负。第 ii 轮的胜者可以获得 2ai2 * a_{i} 分,败者不得分,如果双方出牌相同,则算平局,二人都可获得 aia_{i} 分(i=1,2,,Ni = 1, 2, …, N)。

玩了一会后,你们觉得这样太过于单调,于是双方给自己制定了不同的新规则。小杨会在整局游戏开始前确定自己全部 NN 轮的出牌,并将他的全部计划告诉你;而你从第 22 轮开始,要么继续出上一轮出的牌,要么记一次“换牌”。

游戏结束时,你换了 tt 次牌,就要额外扣 b1+b2+...+btb_{1} + b_{2} + ... + b_{t} 分。

请计算出你最多能获得多少分。

输入格式

第一行一个整数 NN ,表示游戏轮数。 第二行 NN 个用单个空格隔开的非负整数 a1,...,aNa_{1}, ..., a_{N},意义见题目描述。 第三行 N1N - 1 个用单个空格隔开的非负整数 b1,...,bN1b_{1}, ..., b_{N - 1},表示换牌的罚分,具体含义见题目描述。由于游戏进行 NN 轮,所以你至多可以换 N1N - 1 次牌。 第四行 NN 个用单个空格隔开的整数 c1,c2,...,cNc_{1}, c_{2}, ..., c_{N},依次表示小杨从第 11 轮至第 NN 轮出的牌。保证 ci{0,1,2}c_{i} \in \{0, 1, 2\}.

输出格式

一行一个整数,表示你最多获得的分数。

样例

4
1 2 10 100
1 100 1
1 1 2 0
219
6
3 7 2 8 9 4
1 3 9 27 81
0 1 2 1 2 0
56

提示

样例1解释

你可以第 11 轮出 00,并在第 2,32, 3 轮保持不变,如此输掉第 1,21, 2 轮,但在第 33 轮中取胜,获得 210=202 * 10 = 20 分;随后,你可以在第 44 轮中以扣 11 分为代价改出 11,并在第 44 轮中取得胜利,获得 2100=2002 * 100 = 200 分。如此,你可以获得最高的总分 20+2001=21920 + 200 - 1 = 219

数据范围

  • 对于 30%30 \% 的测试点,保证 N15N \leq 15
  • 对于 60%60 \% 的测试点,保证 N100N \leq 100
  • 对于 100%100 \% 测试点,保证 N1000N \leq 1000 ;保证 0ai,bi1060 \leq a_{i}, b_{i} \leq 10^6

来源

GESP 2023年12月 C++七级T2